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Abstract

The fully nonlinear (geometric and material) system of Field Dislocation Mechanics is reviewed
to establish an exact analogy with the equations of ideal magnetohydrodynamics (ideal MHD)
under suitable physically simplifying circumstances. Weak solutions with various conservation
properties have been established for ideal MHD recently by Faraco, Lindberg, and Székelyhidi
using the techniques of compensated compactness of Tartar and Murat and convex integration;
by the established analogy, these results would seem to be transferable to the idealization of
Field Dislocation Mechanics considered. A dual variational principle is designed and discussed
for this system of PDE, with the technique transferable to the study of MHD as well.

1 Introduction

Dislocations are line defects in the perfect crystal structure of many solids. They are found in
abundance in most common metals, and exist either as closed loops or curves that cannot end
within the body, often forming complex tangles as they interact and change shape through the
stresses they produce, due to the disturbance produced by them in the perfect crystal structure,
and due to applied loads. These elastic interactions are of long-range, e.g. in 2-d given by ∼ r−1

(away from their cores), where r is their separation. It is the motion of large numbers of dislocations
that produces large plastic, or permanent, deformation in metals, this ductility being of significant
technological importance. At the same time, their tangling inhibits this motion giving the material
its strength. Low ductility makes for less resilient brittle materials, prone to catastrophic failures
by cracking even in the presence of high strength. High-strength, high-ductility materials is a holy
grail of material design.

Dislocations have been studied as topological defects in classical elasticity, initiated by Volterra
in 1907 [Vol07], with a great deal understood about their elastic stresses and static, energetic in-
teractions in linear elasticity [HL82]. Their dynamic aspects, in particular the connection to the
macroscopic plasticity of metals, remains a difficult subject and a matter of current study. A com-
plete dynamical theory of unrestricted material and geometric nonlinearity within continuum me-
chanics has taken shape in recent years (see, e.g., [Ach23b, AKS19, ZAWB15, AZA20, AA20, AA19]
with detailed bibliographic threads to earlier works in the overall subject). Within this particular
framework, rigorous mathematical studies have been undertaken in [AMZ10, AT11, AS23]. In this
paper, an analogy with ideal magnetohydrodynamics is established in Sec. 2, and some ideas for
defining variational dual solutions to the PDE of dislocation mechanics are discussed in Sec. 3.
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2 The parallel between ideal MHD and FDM

We will always employ the summation convention on repeated indices, unless explicitly mentioned
otherwise. A Rectangular Cartesian coordinate system is employed in all instances, and X repre-
sents the alternating tensor with components represented as eijk.

Let Ω ∈ R3 be a fixed domain and [0, T ] an interval of time. For the fields

ρ : Ω × [0, T ] → R+, mass density

v : Ω × [0, T ] → R3, material velocity

V : Ω × [0, T ] → R3, dislocation velocity

T : Ω × [0, T ] → R3×3
sym, Cauchy stress

α : Ω × [0, T ] → R3×3, Dislocation density

W : Ω × [0, T ] → R3×3, inverse elastic distortion,

the equations of Field Dislocation Mechanics are given by

∂t(ρv) + div(ρv ⊗ v) = div T ; ∂t(ρvi) + ∂j(ρvivj)− ∂jTij = 0

(balance of linear momentum) (1a)

∂tα+ curl(α× (v + V )) = 0; ∂tαij + ejrk∂r(ekmnαim(vn + Vn)) = 0

(Burgers vector conservation) (1b)

curlW = −α; eijk∂jWrk = −αri (incompatibility of elastic distortion)
(1c)

∂tρ+ div(ρv) = 0; ∂tρ+ ∂i(ρvi) = 0 (balance of mass) (1d)

along with the constitutive equations (for free energy density given by ϕ(W ) + ε|α|2, a sum of
elastic and core energy densities)

T = −ρW T∂Wϕ− ερ|α|2I + εραTα; Tij = −ρWki∂Wijϕ− ερ(αrsαrs)δij + εραkiαkj

V = MX
(
(−ρ∂Wϕ+ ερcurlα)T α

)
; Vi = Mijejmn((−ρ ∂Wrmϕ+ ερ empq∂pαrq)αrn),

(2)

where M is a constant, positive semi-definite, dislocation mobility tensor, ε ≪ 1 is a constant
scalar, and the ‘Burgers vector’ is the topological charge of a dislocation line. The statements (1b)
and (1c), along with the physical assumption that plastic strain rate arises only from the presence
of dislocation motion implies the statement that the elastic distortion evolves according to

∂tW +∇Wv +W∇v − α× V = 0; ∂tWij + vk∂kWij +Wim∂jvm − (α× V )ij = 0,

which is an alternate and, strictly speaking, more general, evolution statement in lieu of (1b) in
FDM.

We now invoke a set of assumptions to probe the behavior of FDM in a restricted setting. These
are:

• The time scales of interest are much faster than the characteristic time scales of dislocation
motion relative to the material built into the dislocation mobility tensor M defining V , so
that one may assume that we are in the regime of elastic, i.e. non-dissipative, ideal dislocation
dynamics where α× V ≈ 0 (it can be shown that the dissipation of mechanical energy in the
model is characterized by the density T : (α×V )). This also implies that the initial dislocation
density profile is transported solely by the material velocity during any deformation process
being studied;
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• the deviatoric stress response is a bounded function of elastic distortion, whereas the hydro-
static stress response is extremely stiff; to simplify matters we replace this stiff hydrostatic
stress response with the constraint of flow incompressibility, ∂ivi = 0, and introduce a pres-
sure field p as the corresponding Lagrange multiplier to be solved for as an independent field.
We then satisfy balance of mass by choosing ρ = ρ0, a constant;

• We assume that the inverse elastic distortion field has rapid spatial variation of the form

W (x, t) ∼ W̃
(
ε−(

1
2
+m)x, t

)
,m > 0 (inherited, in part, from the initial dislocation density

field), with the bounded deviatoric stress response being O(1), so that the latter can be
ignored in writing the stress as T ≈ −pI + αTα (after defining α := ε−m√

ρ0 curl W̃ and
absorbing all hydrostatic parts of the stress into the constitutively undetermined pressure
field).

With this understanding, we have, for

v : Ω × [0, T ] → R3; α : Ω × [0, T ] → R3×3; p : Ω × [0, T ] → R; B : Ω × [0, T ] → R3,

where B is the external magnetic field in MHD, the correspondence shown in Table 1 between ideal
FDM and ideal MHD (with (v, p) being distinct fields between FDM and MHD):

Ideal FDM Ideal MHD

∂tv + div
(
v ⊗ v − αTα+ pI

)
= 0 ∂tv + div(v ⊗ v −B ⊗B + pI) = 0

div v = 0 div v = 0

∂tα+ curl(α× v) = 0 ∂tB + curl(B × v) = 0

div α = 0 div B = 0

Table 1: Correspondence between ideal FDM and MHD

For a concise description of ideal MHD, see, e.g., [FLS22]. We note here that for v specified,
the dislocation transport equation in FDM constitutes three uncoupled sets of vectorial equations
for the rows of the matrix α (the curl on a matrix argument there amounts to row-wise curls of
the matrix). This does not constitute a substantial difference with ideal MHD, with the primary
difference arising from the nonlinearities BiBj and αkiαkj in balance of linear momentum.

Defining the field χ : Ω × [0, T ] → R3×3 in FDM such that

curl χ = α

one can define the analog of magnetic helicity in FDM as the quantity∫
Ω
χ : αdx =

∫
Ω
χijαij dx.

As discussed by Faraco, Lindberg, and Székelyhidi [FLS22], it is shown by them that magnetic
helicity,

∫
Ω A ·B dx, is conserved for ideal limits of resistive, viscous MHD, if such limits exist (for a

definition of the ideal limit of resistive, viscous MHD, see [FLS22]). They also show that magnetic
helicity can be conserved with energy dissipation for some L∞ solutions (u,B) to ideal MHD, as well
as the fact that for 2 ≤ p < 3 there are fields (u,B) ∈ (0, T ;Lp(T3)) that do not conserve magnetic
helicity or energy. Given the above parallel between ideal MHD and ideal FDM, one might expect
similar results to exist for the latter as well. These authors also discuss the even more difficult
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question of proving the existence of ideal limit solutions of resistive, viscous MHD, and appropriate
admissibility criteria on ideal MHD that can allow the recovery of only ideal limit solutions of
resistive, viscous MHD. In view of such results and questions, the correspondence established above
already allows for many of the mathematical results of ideal MHD to be potentially transferrable
to ideal FDM. In the following, a class of variational principles is proposed for the study of the
PDE system of ideal FDM, with similar formalism also being applicable to the equations of ideal
MHD. The approach [Ach22, Ach23b] bears strong links to the ideas of ‘hidden convexity’ for
PDE advanced by Y. Brenier [Bre20, Bre18], with a primary philosophical difference being our
reliance on, and exploitation of, the Euler-Lagrange equations of the variational principle, with the
deliberate recognition that this is not an impediment of any sort.

3 Variational principle for ideal FDM

We consider the system of PDE of ideal FDM on a domain Ω ∈ R3 given by

∂tvi + ∂j(vivj − αkiαkj + pδij) = 0

∂tαij + ejrp∂r(epmsαimvs) = 0 (3a)

∂ivi = 0,

noting that (3a) implies div α = 0. Since the question of appropriate boundary conditions for ideal
FDM is non-trivial, we will assume the domain Ω = (0, 1)× (0, 1)× (0, 1) to be the unit cube with
periodic boundary condition on the fluxes, i.e. with no sum implied on the index j,

(vivj − αkiαkj + pδij)
∣∣
(xj=1,t)

− (vivj − αkiαkj + pδij)
∣∣
(xj=0,t)

= 0

(epjrepmsαimvs)
∣∣
(xj=1,t)

− (epjrepmsαimvs)
∣∣
(xj=0,t)

= 0.
(4)

The initial conditions specified on Ω are

vi(x, 0) = v
(0)
i (x); αij(x, 0) = α

(0)
ij (x) x ∈ Ω. (5)

We refer to these equations and side-conditions as the ‘primal’ system and adopt the perhaps
somewhat unconventional point of view of treating these equations as constraints for optimizing a
more-or-less arbitrarily chosen auxiliary potential H(U, x, t) of the primal variables and space-time,
with a requirement defined next.

Let

O := Ω × (0, T ); (v, λ, v̄) : O → R3; (α,A, ᾱ) : O → R3×3; (p, µ, p̄) : O → R
U := (v, α, p) primal fields; D := (λ,A, µ) dual fields; Ū := (v̄, ᾱ, p̄) base states

D := (∂tλ,∇λ,∇µ, ∂tA,∇A).

Defining a Lagrangian as

LH(U,D, x, t) := −vi∂tλi − (vivj − αkiαkj + pδij)∂jλi

− vi∂iµ− αij∂tAij − epjrepmsαimvs∂rAij +H(U, x, t)
(6)

(obtained, up to addition of H, by forming the scalar products of (3) with the dual (Lagrange multi-
plier) fields and integrating by parts), the requirement on the potentialH is that ∂ULH(U,D, x, t) =
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0 be ‘solvable’ for U in terms of (D, x, t). I.e., the choice ofH must be such as to enable the existence
of a function U (H)(D, x, t) such that

∂LH

∂U

(
U (H)(D, x, t),D, x, t

)
= 0 (7)

is satisfied for (x, t) ∈ O and for each D = D(x, t) arising from an appropriately non-trivial class
of dual fields of interest.

We refer to the function U (H) as a dual-to-primal (DtP) mapping.
When the DtP mapping can be defined, further defining a ‘dual’ functional corresponding to

the PDE system (3) as

SH [D] =

∫
O
LH

(
U (H)(D(x, t), x, t),D(x, t), x, t

)
dxdt−

∫
Ω
λi(x, 0)v

(0)
i (x) dx−

∫
Ω
Aij(x, 0)α

(0)
ij (x) dx

(8)
with the conditions

λ
∣∣
(xj=1,t)

= λ
∣∣
(xj=0,t)

; α
∣∣
(xj=1,t)

= α
∣∣
(xj=0,t)

, x ∈ ∂Ω, j = 1, 2, 3;

µ
∣∣
∂Ω×(0,T )

specified arbitrarily;

λ
∣∣
Ω×{T}, A

∣∣
Ω×{T} specified arbitrarily, (9a)

it can be checked that, due to (7) and the necessarily affine dependence of LH on D, the Euler-
Lagrange (E-L) equations and natural boundary conditions of the dual functional SH [D] are the
primal statements (3)-(4)-(5) with the replacement

U → Û (H), where Û (H)(x, t) := U (H)(D(x, t), x, t). (10)

Clearly, the purpose of the auxiliary potential H is to facilitate a change of variables U (H) by
dominating any non-monotonicity in the variable U arising from the primal PDE in ∂ULH by a
sufficiently monotone ∂UH, achieved through a choice of H with a sufficiently strongly positive-
definite Hessian. Of course, the matter is not entirely as clear-cut in that LH depends on D which
H cannot depend upon, but to the extent that in the course of solving any specific problem, the
structure of the PDE and the choice of H can be made to work together to ensure the existence
of a such a mapping (at least for a sufficiently large class of dual fields), one can obtain a weak
variational formulation of ideal FDM with some rather desirable properties, as we discuss next.

Given the quadratic nonlinearity of (3), we now choose to work with a potential H of the form:

H(U, x, t) :=
1

2

(
av|v − v̄(x, t)|2 + aα|α− ᾱ(x, t)|2 + ap|p− p̄(x, t)|2

)
, (11)

where 1 ≪ av, aα, ap ∈ R+ are arbitrary constants, and the base state Ū comprises freely assignable
functions over space-time (and hence ‘states,’ even though time-dependent). Then the system
∂L
∂U = 0 (we drop the subscript H now, having made a specific choice) becomes an algebraic system
to be solved at each (x, t) ∈ O for (v̂, α̂, p̂)|(x,t), given (D(x, t), Ū(x, t)):

∂viL = av(v̂i − v̄i)− (∂jλi + ∂iλj)v̂j − epjrepmiα̂km∂rAkj − ∂tλi − ∂iµ = 0

∂αijL = −epkrepjsv̂s∂rAik + aα(α̂ij − ᾱij) + (∂sλj + ∂jλs)α̂is − ∂tAij = 0

∂pL = ap(p̂− p̄) − ∂iλi = 0.

(12)

This system is to be satisfied simultaneously with the E-L equation of the dual functional, (3) with

the replacement U → Û which we now refer to as ˆ(3). One typical iteration of a conceptual algorithm
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for the nonlinear coupled problem (that has been successfully implemented [KA23b, Aro23, SGA23,
KA23a]) consists of making a guess for the fields D, evaluating Û from the mapping (12), and

solving the linearization of ˆ(3) to improve the guess for D until convergence in the solution of ˆ(3),
i.e. a standard Newton method for which the starting guess Dguess = 0 suffices with corresponding
Ûguess = Ū satisfying the DtP mapping.

We develop next the explicit form of the dual functional for this problem - which also provides
a guideline for a general PDE system with at most quadratic nonlinearities. Indexing the elements
of U in a one-dimensional array by upper-case Latin letters and similarly the elements of D by
upper-case Greek letters (the dependence of D on ∇λ is only through its symmetric part and that
on ∇A is through its curl), the Lagrangian in (6) can be expressed, in terms of constant matrices
MIΓ and BΓJK with B symmetric in last two indices, as

L = U ·MD +
1

2
D · B : (U ⊗ U) +

1

2
(U − Ū) · a (U − Ū)

= UIMIΓDΓ +
1

2
DΓBΓJKUJUK +

1

2
aIJ(UI − ŪI)(UJ − ŪJ)

= (U − ŪI)MIΓDΓ +
1

2
aIJ(UI − ŪI)(UJ − ŪJ) +

1

2
DΓBΓIK(UI − ŪI)(UK − ŪK)

+ ŪIMIΓDΓ +
1

2
DΓBΓJKUJ ŪK +

1

2
DΓBΓJKŪJUK − 1

2
DΓBΓJKŪJ ŪK .

(13)

Then the DtP mapping is to be generated from

∂UL = MD + a(U − Ū) +D · B(U − Ū) +D · BŪ = 0

∂UI
L = MIΓDΓ + aIJ(UJ − ŪJ) +DΓBΓIK(UK − ŪK) +DΓBΓIKŪK = 0.

(14)

Contracting (14) with (UI − ŪI) and substituting for (UI − ŪI)MIΓDΓ in (13) one obtains

L = −(UI − ŪI)aIJ(UJ − ŪJ) +
1

2
aIJ(UI − ŪI)(UJ − ŪJ)

−DΓBΓIK(UI − ŪI)(UK − ŪK) +
1

2
DΓBΓIK(UI − ŪI)(UK − ŪK)

− (UI − ŪI)DΓBΓIKŪK + UIDΓBΓIKŪK

+ ŪIMIΓDΓ − 1

2
DΓBΓJKŪJ ŪK

= −1

2
(UI − ŪI)aIJ(UJ − ŪJ)−

1

2
DΓBΓIK(UI − ŪI)(UK − ŪK)

+ ŪIMIΓDΓ +
1

2
DΓBΓJKŪJ ŪK

= −1

2
(U − Ū) · a (U − Ū)− 1

2
D · B :

((
U − Ū

)
⊗

(
U − Ū

))
+ Ū ·MD +

1

2
D · B : (Ū ⊗ Ū).

Using the DtP mapping once again in the form

KIJ

∣∣
D(UJ − ŪJ) = −(MIΓ + BΓIKŪK)DΓ ; KIJ

∣∣
D := aIJ +DΓBΓIJ , (15)

one obtains, with the definition

AΠΓ
∣∣
(D,Ū)

:=
(
MJΠ + BΠJKŪK

) (
K
∣∣−1

D

)
JI

(
MIΓ + BΓIKŪK

)
,

L = −1

2
DΠ · AΠΓ

∣∣
(D,Ū)

DΓ + ŪIMIΓDΓ +
1

2
DΓBΓJKŪJ ŪK

=: −1

2
D · A

∣∣
(D,Ū)

D + Ū ·MD +
1

2
D · B : (Ū ⊗ Ū).
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Correspondingly, the dual functional for ideal FDM may be explicitly written as

S[D] =

∫
O
−1

2
D · A

∣∣
(D,Ū)

D + Ū ·MD +
1

2
D · B : (Ū ⊗ Ū) dxdt

−
∫
Ω
λ(x, 0) · v(0)(x) dx−

∫
Ω
A(x, 0) : α(0)(x) dx,

along with the conditions (9).

(16)

We make the following observations:

• One may wonder why it should be possible to solve a primal initial value problem as a
boundary value problem in the time-like direction? Indeed, all classical experience suggests
that any such endeavor most likely produces an ill-posed problem, see, e.g., in this specific
context of solving a dual variational problem the remarks of Brenier [Bre20, p. 39] “Anyway,
it seems foolish to solve the IVP problem by a space-time convex minimization technique.
Indeed, ..... we are very likely to get optimality equations of space-time elliptic type and
therefore ill posed,” as well as in [Bre18, p. 580]. The point to note here is that the boundary
value problem in the time-like direction, corresponding to a primal initial-value-problem arises
in the dual fields which satisfy second-order degenerate elliptic equations that admit final-
time conditions - this has been established in [Ach22, Sec. 7]-[KA23b] in the context of linear
and nonlinear equations. A simple explanation of this in the context of the present work
is as follows: we note that imposition of the boundary conditions in time (9a) allows the
mapped primal fields (û, α̂) to take on the values dictated by the primal initial value problem
by virtue of the fact that the mapping equations (12) depend on (∂tλ, ∂tA) and specifying
(λ(x, T ), A(x, T )), x ∈ Ω, does not restrict the values of (∂tλ(x, T ), ∂tA(x, T )), x ∈ Ω.

• We note that if the base state Ū in (11) is a weak solution of (3), then (12) and the fundamental
property of the scheme (10) show that the dual state D = 0 is a critical point of the dual
functional. Thus, corresponding to every weak solution of the primal system at least one dual
functional can be designed which has a critical point that generates a global-in-time solution
to the primal problem through the corresponding DtP mapping. Moroever, since the dual
functional is concave, this solution is also a global mazimizer. This may be thought of as a
consistency check for the scheme.

• When the primal problem has uniqueness of solutions, if a solution exists to the dual problem
for any choice of the auxiliary potential H, then such a dual solution defines the unique primal
solution through the DtP mapping. When the primal system has non-unique solutions, then
the choice ofH is expected to act like a ‘selection criterion.’ Following the arguments provided
in [Ach23a, Sec. 3] it can be shown that the dual PDE system ˆ(3) is locally degenerate elliptic
in a neighborhood around the dual state D = 0. Thus, it may be reasonable to expect that
if a solution to the primal system happens to be ‘close’ to the base state Ū that corresponds
to the D = 0 dual state, then such a primal solution may be recoverable by working with a
shifted quadratic (11) designed with this base state.

• If solving the mapping equations and subsequently using these mappings to define the dual
functional were to be reinterpreted as performing an infU L(U,D, x, t) to define the bulk
integrand of (16), then by the affineness of L in D, the dual integrand is concave in ∇D
regardless of the monotonicity of the left-hand-side of the primal system in the argument
U . Hence, if the dual functional can now be shown to be coercive in the dual fields, then
the existence of a maximizer can be expected. This can be thought of as a definition of
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a variational dual solution to the primal system, because of the formal consistency of our
scheme in defining a solution to the primal PDE system through the DtP change of variables.

At the level of the explicit dual functional (16), a computation of the second variation about
the state D̄ = 0 shows that the second variation is positive semi-definite. If now Ū corresponds
to a solution of the primal problem, then the D̄ = 0 state is a critical point of the dual
variational problem and hence is neutrally stable. Thus, regardless of the stability of Ū as a
solution to the primal system, it can be approached as a stable solution through the proposed
dual scheme. This seems to have implications for computing unstable primal solutions through
our scheme.

• Another intriguing possibility seems to be the question of using the base state to be a solution
to the primal system with a small regularization for which solutions may be accessible and
then see what solution to the ideal system (FDM or MHD) may be possible to define or
approximate through our scheme. A concrete example of this ideas is worked out in [KA23a]
in the context of computing entropy solutions to the inviscid Burgers equation by using a base
state of Burgers equation with small viscosity (a curious aside in this regard is that despite
similarities in ideal MHD and ideal FDM, the formal structure of their energy dissipative
counterpart systems are very different in nature [AT11]).
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I thank László Székelyhidi and Vladimir Šverák for helpful discussion. This work was supported by
the Simons Pivot Fellowship grant # 983171, and the Center for Extreme Events in Structurally
Evolving Materials, Army Research Laboratory Contract No. W911NF2320073.

References

[AA19] Rajat Arora and Amit Acharya. Dislocation pattern formation in finite deformation
crystal plasticity. International Journal of Solids and Structures, 184(2):114–135, 2020,
electronically published Feb. 26, 2019.

[AA20] Rajat Arora and Amit Acharya. A unification of finite deformation J2 Von-Mises
plasticity and quantitative dislocation mechanics. Journal of the Mechanics and Physics
of Solids, 143:104050, 2020.

[Ach22] Amit Acharya. Variational principles for nonlinear PDE systems via duality. Quar-
terly of Applied Mathematics, LXXXI:127–140, 2023, Article electronically published
on September 26, 2022.

[Ach23a] Amit Acharya. A hidden convexity in continuum mechanics, with application to classi-
cal, continuous-time, rate-(in) dependent plasticity. arXiv preprint arXiv:2310.03201,
2023.

[Ach23b] Amit Acharya. A dual variational principle for nonlinear dislocation dynamics. Journal
of Elasticity, https://doi.org/10.1007/s10659-023-09998-5, 2023.

[AKS19] Amit Acharya, Robin J. Knops, and Jeyabal Sivaloganathan. On the structure of linear
dislocation field theory. Journal of the Mechanics and Physics of Solids, 130:216–244,
2019.

8

https://doi.org/10.1007/s10659-023-09998-5


[AMZ10] Amit Acharya, Karsten Matthies, and Johannes Zimmer. Travelling wave solutions for a
quasilinear model of field dislocation mechanics. Journal of the Mechanics and Physics
of Solids, 58(12):2043–2053, 2010.

[Aro23] Abhishek Arora. A study of nonlinear deformations and defects in the actuation of
soft membranes, rupture dynamics, and mesoscale plasticity. Phd thesis, Carnegie Mel-
lon University, September 2023. Available at https://www.proquest.com/docview/

2869411693?accountid=9902.

[AS23] Amit Acharya and Marshall Slemrod. Existence, uniqueness, and long-time behavior of
linearized field dislocation dynamics. Quarterly of Applied Mathematics, LXXXI:247–
258, 2023.

[AT11] Amit Acharya and Luc Tartar. On an equation from the theory of field dislocation
mechanics. Bollettino dell’Unione Matematica Italiana, 9:409–444, 2011.

[AZA20] Rajat Arora, Xiaohan Zhang, and Amit Acharya. Finite element approximation of
finite deformation dislocation mechanics. Computer Methods in Applied Mechanics and
Engineering, 367:113076, 2020.

[Bre18] Y. Brenier. The initial value problem for the Euler equations of incompressible fluids
viewed as a concave maximization problem. Communications in Mathematical Physics,
364(2):579–605, 2018.

[Bre20] Y. Brenier. Examples of hidden convexity in nonlinear PDEs. https://hal.science/
hal-02928398/document, 2020.
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